FEATURES AND CONTROLS

1. Take-apart stainless steel hinges
 The door can be removed for greater access to wiring compartment during installation. To remove, open door and lift straight up and off of hinges. To replace, line up door hinges over pins of housing hinges and carefully push down.

2. Operating instructions inside door.
 Refer to these instructions for additional information on wiring to the transformer.

3. Magnetic overload circuit breakers
 For reliable automatic secondary circuit protection. Circuit breakers may also be used as on/off rocker switches.

4. Output power LED indicators
 Red LED indicators are illuminated when output power is available at the terminals.

5. Input power LED indicator
 Green LED indicator is illuminated when input power is supplied to the transformer.

6. Color-coded terminal leads
 Extended with removable dead front covers for alternative hard wiring techniques.

7. 1 1/4” – 2” knockout
 For conduit and accessory mounting.

8. Adjustable Cable Raceway Feeder (ACRF)
 ACRF in the center of the bottom tray allows for easy entry of multiple low voltage cables during installation. Semi-rigid feeder cover slides out and can be cut with a saw, utility knife, or heavy snips to create a custom opening for incoming cabling. Note: when inserted, make sure front edge of cover remains flush with front edge of enclosure in order for the transformer door to close securely.

9. Terminal strip
 for multiple low voltage cable connections. Cover flap opens to color coded voltage taps.

10. Accessory terminal strip
 For easy installation of optional photocell, motion sensor, or other external switching devices.

11. Collapsible, swing-down bottom tray
 Bottom tray can swing-down for greater access to wiring compartment during installation. The tray is held in place with a hinge screw and a retaining screw on each side of the transformer enclosure. Loosen the two retaining screws (nearer to the front of the enclosure on each side) and pull down on tray to open.

12. ⅝” – ¾” knockouts
 For conduit and accessory mounting.

13. Power cord
 6-foot, heavy-gauge, grounded, water-resistant power cord with integrally molded plug.

14. Lockable, stainless steel latch
 Can be secured to prevent tampering.

15. 120-volt accessory receptacle
 For use with optional, removable multi-setting mechanical (TC-112) 24-hour timer or electronic/digital (DTC-150) 7-day timer (with battery backup).

MOUNTING INSTRUCTIONS

WARNING: Transformers must be installed in accordance with the National Electrical Code (NEC) and local codes. Failure to do so will void the warranty and may result in serious injury and/or damage to the transformer.

1. Find a suitable, flat-surfaced location to mount transformer, taking in to consideration proximity to 120 volt AC power source.

2. Attach provided template to wall at desired height. (Should be mounted at least 1.5’ from the ground for safe and convenient operation.)

3. Center punch and drill (with an appropriate bit size for the screws to be used) at crosshair marks on the template.

4. Using appropriate screws for the selected mounting surface, insert screws into predrilled holes deep enough to slip transformer keyhole slots over. (Make sure screws are of a load bearing quality.)

5. Hang transformer case securely over screws.

TRANSFORMER SIZING

Low voltage lighting systems require the use of a transformer to reduce the standard 120 volt power from ordinary household electricity to the 12 volt needed to power low voltage lamps. Transformers vary in size or capacity. The total lamp wattage (load) of all fixtures connected to one transformer must not exceed the wattage capacity of the transformer. Therefore, to determine the transformer size needed, simply add up the wattage of all lamps you plan to use +10% for cable & connection factor. (Low voltage cable and fixture connections add hidden watts to your system.)

TRANSFORMER SIZE = TOTAL FIXTURE WATTAGE x 1.1

TIP: All low voltage connections must be tight and waterproof.

Select a transformer that matches as closely as possible your total lamp wattage. For example: if you have 13 fixtures all rated at 20 watts, you will need a 300-watt transformer (13 x 20 = 260 watts plus 10% = 286). If your total wattage is too great, either divide the total load between two transformers or use a more powerful model. Selecting a transformer with about 20% higher capacity than your total lamp wattage will allow for adding a fixture or two later.

LOW VOLTAGE CABLE LENGTH

In planning a low voltage system, it is necessary to consider the impact of voltage drop. Because of cable’s inherent resistance, voltage drops along its length; the end-of-run lamps will be dimmer than those at the beginning. Since voltage drop is a function of cable length and cable size and total fixture wattage, voltage drop can be minimized in several different ways:

• Use multiple cable runs
• Use heavier gauge cable (8 or 10 gauge)
• Shorten cable lengths or runs
• Reduce wattage of individual fixtures
• Reduce the total number of fixtures on a run
• Use multiple transformers in different locations

Cable is measured by gauge. The lower the number, the thicker the cable and the more current it carries. Cable for low voltage lighting...
is available in three gauges: #12-2, #10-2, and #8-2. As noted, #8-2 gauge is the largest and is capable of carrying the most current. Refer to the Cable Length Guide below to estimate the maximum allowable cable length that will keep the farthest fixture from the transformer from becoming to dim (below 10.5 volts). In addition, your transformer’s output options, the design of your lighting system and corresponding cable layout can help minimize voltage drop (see 12-Volt Cable Layout Options, Output Adjustment Switch, and Multi-Tap Installation sections).

TIP: Expect a voltage drop of greater than 1.5 volts when cable length is longer than recommended. Use the formula below to calculate maximum cable length.

\[V_d = \frac{L \times W \times 2}{K_c} \]

- \(V_d \): Voltage drop in the section of cable, in volts
- \(L \): Length of the section of cable (one way distance), in feet
- \(W \): Total Watts carried by the section of cable for the lamps it supplies
- \(K_c \): ‘Cable Constant’, as follows:

<table>
<thead>
<tr>
<th>Cable Size (AWG)</th>
<th>(K_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>7500</td>
</tr>
<tr>
<td>10</td>
<td>11920</td>
</tr>
<tr>
<td>8</td>
<td>18960</td>
</tr>
</tbody>
</table>

12 VOLT CABLE LAYOUT OPTIONS:

TIP: Connect all lamps in parallel. EXAMPLE: Connect one side of each lamp to “COM” terminal, the other side to “12V” terminal.

1. Straight run installation: Fixtures run in sequence directly from the transformer.

2. Loop installation: Fixtures are arranged in a looped circuit, reducing the effects of voltage drop.

3. Split load installation or multiple cable run: Fixtures run in two or more directions from the transformer. Locating the transformer in the center of the run reduces the effects of voltage drop.

4. “T” installation (RECOMMENDED): Allows more equal distribution of power to the center of the run, or to a run some distance away. Cable running from the transformer must be of a heavier gauge (#8 or #10).

CABLE CONNECTION DETAIL

TIP: See installation instructions on the inside transformer cover for single and multiple circuit output terminal details. All transformers have one manual reset circuit protector per circuit. Multiple circuit units must be equally loaded between circuits.

TIP: High-Power (HP) transformers supply output voltage which exceeds 12 volts. Extreme care must be taken during installation to avoid premature lamp burnout due to high voltage. Use of a voltimeter during installation is the only way to ensure a proper voltage at the fixture. As a guide when designing your job, expect a 2 volt drop for every 100 feet of 12-2 cable to which 200 Watts of evenly spaced fixtures are connected.

SAMPLE HP CONNECTION - 1200 WATT HP TRANSFORMER WITH 2 CIRCUITS

Refer to sample diagram. Connect one side of fixtures (common) up to 300 watts per circuit, using 12 gauge or larger direct burial cable. Strip 3/4” of cable insulation and twist wire strands tightly before insertion into transformer’s output terminals. Each terminal will accept two #8, four #10, or 6 #12 wires. Tighten connector screws firmly. Retighten after one week of operation. Connect remaining side of fixtures to output tap according to your voltage needs. It is always best to connect your fixtures to the 12-volt tap first, then use a voltmeter to measure the AC voltage of the fixture nearest to the transformer. Subtract the measured voltage from 12 and add the result to determine your higher tap. Example: With fixtures connected to 12-volt tap, measured voltage at first equals 10. 12 volts required at fixture minus 10 volts measured equals a 2-volt difference. Add the difference to 12 in order to determine the appropriate tap to be used. (2 + 12 = 14)

REMOTE PHOTOCELL CONTROL FUNCTIONS FOR RP MODEL TRANSFORMERS

Photocell Mounting:
1. Mount photocell eye where exposed to sunlight.
2. Run photocell cable with plug end back to transformer enclosure.
3. Locate square shaped hole in enclosure bottom and feed plug through to socket marked ‘PHOTOCELL INPUT’. Plug photocell in.
4. To test, apply input power to transformer and turn photocell control knob to position 6, ‘DUSK TO DAWN’.
5. Cover photocell eye completely. Transformer should turn on within 5 minutes.
6. Uncover photocell eye for normal operation.

Timer Setting:
Timer does not require time-of-day setting or battery backup maintenance. It depends on the photocell ‘darkness signal’ to begin the ‘on’ duration cycle. It has six modes of operation.

- **By moving the dial to one of the four ‘on time’ switches (2,4,6,8 hours), you tell the unit to turn on at darkness, begin timing, and turn off when the selected time period ends.**
- **With dial turned to ‘DUSK TO DAWN’, the timer never activates, allowing the unit to operate from dusk until dawn.**
- **To test your system during daylight hours, use ‘ALL ON / TEST’ to override the photocell and turn the system on. Whenever input power is applied to the transformer, the lights will remain on.**

TC-112 TIMER SETTING PROCEDURE

1. Turn the outer rim of the timer face (the section with numbers) Clockwise until the arrow on the inner rim points to the approximate time of day.
2. To set time ‘ON’: Locate push pegs on the outer rim of the timer face and firmly push
pegs outward from the timer face until you hear an audible ‘click’
NOTE: Each peg keeps light or appliance ‘ON’ for fifteen-minute sections. Use as few or as many pegs as necessary throughout the day.
4. Time ‘OFF’ is automatically set by leaving the pegs flush against the timer face.
NOTE: You can set multiple on or off programs.
5. Locate override switch on top of timer Make sure it is set to ‘AUTO’.

TIP: When equipped with timer, transformer may be operated manually by sliding override switch to ‘ON’.

DTC-170 DIGITAL TIMER SETTING PROCEDURE

TIP: Refer to enclosed instructions (included with timer) for comprehensive operating instructions.

Initial Operation:
1. Plug the timer into the Transformer 120-volt accessory receptacle and turn the power on. Leave for approximately 14 hours to charge the memory back-up battery.
2. Clear all current information by pressing RESET button with sharp object such as a pen or pencil after charging.
3. Proceed with setting procedures for current time and programming.

TIMER REMOVAL AND REPLACEMENT

When so equipped, the timer supplied with your new transformer is a removable (plug-in) style. Located Inside the cover of the transformer enclosure, it can be pulled out and replaced with a new timer, remote photocell module, or remote control module. To replace a timer, simply grasp both sides of its plastic case and pull firmly. Next, remove the timer plug from the transformer.

To install a new timer, Insert timer plug into timer before plugging into transformer’s timer receptacle.

INSTALLATION OF FIELD INSTALLED PHOTOCELL

1. Turn power off.
2. Select a location or mount the photo control so that artificial light doesn’t cause the unit to turn off. Do not install the photo control so that it directly faces the midday sun. Take care to keep the photocell EYE free of obstructions.
3. The photo control can be mounted in any approved outdoor junction box or fixture.

4. Wire the photo control according to the illustration.
5. Switch power on. The controlled load should turn on regardless of whether you are installing the unit during the day or at night.
6. If it is daylight the control should switch off within a few minutes.

LOW VOLTAGE DIMMER

Vista transformers are ready for use with a low voltage system (inductive load) dimmer. When wired in the 120 volt line, the dimmer will allow you to adjust different levels of lamp brilliance. Your transformer will not work with any dimmer not specifically designed for low voltage systems. A dimmer can be installed at the 120v Accessory Terminal.

LED POWER INDICATORS

Red LED power Indicators are located on the inside panel below each respective circuit breaker to facilitate troubleshooting on the secondary, while an additional green LED is present to facilitate troubleshooting on the primary. The red LED indicators are illuminated when output power is available at the terminals. The Green LED indicator is illuminated when input power is supplied to the transformer.

ADJUSTABLE CABLE RACEWAY FEEDER (ACRF)

ACRF in the center of the bottom tray allows for easy entrance of multiple low voltage cables during installation. Semi-rigid feeder cover slides out and can be cut with a saw, utility knife, or heavy snips to create a custom opening for incoming cabling. Note: when inserted, make sure front edge of cover remains flush with front edge of enclosure in order for the transformer door to close securely.

TROUBLESHOOTING CHECKLIST

Although low voltage lighting systems operate with a minimum of maintenance, occasionally some problems will occur. Here are solutions to some of the most common problems.

I. Entire system will not operate
1. Check 120-volt outlet to ensure you have power to outlet.
2. Check or reset circuit breakers on transformer.
3. Check low voltage cable connection at transformer.
4. Check transformer alone by disconnecting low voltage cable from output terminals, by-passing timer and/or photocell as explained previously, and checking Input and Output power LEDs for power on status (ill).

II. System operates for 15 minutes, and then turns off.
1. Timer incorrectly set. See setting procedure.

III. Circuit breaker on transformer trips
1. Check end of cable to ensure copper strands are not touching.
2. Check connection of cable at transformer to ensure copper strands are not touching.
3. Recalculate total wattage to ensure that you have not exceeded rated wattage of transformer.
4. Check for other shorts at fixture connection points.

If you have a concern or problem with any Vista product, first contact your local distributor. For continuing or unresolved problems, contact factory technical department at (800) 766-8478 between 8:00am and 5:30pm PST, Monday through Friday.